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Rationale 

Currently, the Breast Imaging Reporting and Data System (BIRADS) density categorization is the 

most popular tool for density assessment among radiologists. However, it is subject to inter-

observer variabilities. Therefore, different automated methods have been proposed for dense tissue 

segmentation. In [1], a technique based on modeling of breast tissue using a Gaussian mixture 

model was proposed to segment the fibroglandular tissue in digitized mammograms. We modified 

and extended this method to segment the dense tissue in digital mammograms and then classified 

them to different BIRADS density categories. 

 

Methods 

Three readers were asked to evaluate 150 craniocaudal (CC) digital mammograms and assign a 

BIRADS density score to each mammogram. The majority voting was used to determine the label 

of each image. Half of the cases were cancer-containing while rest of them were normal. The 

images were collected from nine different machines from seven manufacturers. The steps of the 

dense tissue segmentation are shown in Figure 1. Briefly, mammograms were filtered using a 

median filter and then the breast mask was found by thresholding. The mixture of Gaussian 

distributions was fitted to the grey-level histogram of breast tissue. The appropriate value for the 

number of components in the model was found iteratively. Finally, based on the fitted model, a 

threshold was selected to segment the dense area.  

In order to find whether the percentage of dense tissue differed significantly among different 

BIRADS categories, the Kruskal-Wallis H-test was utilized. Pairwise comparisons between 

different categories were done using the rank-based Tukey-Kramer test.  

We compared two different methods for classification of mammograms into four BIRADS 

categories. First, we thresholded the percentage density into four levels. The cut-off values for 



thresholding was found by grid search method. Second, we extracted 21 textural feature [2-4] and 

three first order statistical features (mean, standard deviation, skewness) from both fatty and dense 

tissues and fed these features, along with area of dense tissue, total breast area, and percentage 

density into an ensemble of decision trees for classification. The leave-one-out cross-validation 

was used to evaluate the method. The statistical analysis and implementation of the algorithm was 

performed in MATLAB environment.  

 

Results 

The percentage density differed significantly among different BIRADS categories (χ2(3) =89.9, 

p<0.0001) and differences between all pairs were significant. The first method resulted in a correct 

classification rate (CCR) of 66.7% for predicting consensus of three radiologists' BI-RADS 

categories (BIRADS-I: 79.2%, BIRADS-II: 83.1%, BRADS-III: 31.3%, BRADS-IV: 52.2%) 

while the second method’s CCR was 82.7% (BIRADS-I: 79.2%, BIRADS-II: 90.1%, BRADS-III: 

75.0%, BRADS-IV: 73.9%). For two-category classification, where BIRADS-I was combined 

with BIRADS-II (low density) and BIRADS-III with BIRADS-IV (high density), CCRs were 

90.0% (high: 95.8%, low: 80.0%) and 90.7% (high: 93.7%, low: 85.5%) respectively for method 

1 and 2.  

 

Conclusions 

The proposed automatic method was able to predict radiologist-based BIRADS density categories 

by using both the percentage density with textural and intensity-based features. It can be 

hypothesized that radiologists consider both amount of dense tissue and tissue texture in density 

assessment.   
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Figure 1- Steps of the proposed algorithm 
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